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SUMMARY 

The generalized integral transform technique is employed in the hybrid numerical-analytical solution of the 
Navier-Stokes equations in streamfunction-only formulation, which govern the incompressible laminar flow of a 
Newtonian fluid within a parallel plate channel. Owing to the analytic nature of this approach, the outflow 
boundary condition for an infinite duct is handled exactly, and the error involved in considering finite duct lengths 
is investigated. The present error-controlled solutions are used to inspect the relative accuracy of previously 
reported purely numerical schemes and to compare Navier-Stokes and boundary layer formulations for various 
combinations of inlet conditions and Reynolds number. 
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INTRODUCTION 

The analysis of low-Reynolds-number flows in channels is of vital importance in various branches of 
engineering sciences in connection with both heat and fluid flow applications. In such situations the 
simplifymg assumptions in boundary layer theory may no longer be applicable and the full Navier- 
Stokes equations are required to model the physical problem. Explicit analytic solutions are not 
achievable even for laminar incompressible steady flow conditions, and numerical approaches for 
elliptic problems must be employed in the estimation of velocity and pressure fields along the 
hydrodynamic developing region of the channel. The numerical solution procedure is further 
complicated by the need to impose an outflow boundary condition for a finite duct length, which, if not 
appropriately chosen, may induce significant errors in the velocity field evaluations within the duct. 

A literature review reveals an ongoing concern with the accurate solution of low-Reynolds-number 
flows inside channels. For the case of present interest, i.e. parallel plate channels, previously reported 
 contribution^'-^ deal with different versions of the classical finite difference’” and finite element 
methods as well as with approximate analytic-type solutions obtained through linearization of inertia 
terms.6 Various inlet flow conditions were considered, with particular emphasis on uniform parallel 
flow and, to a lesser extent, uniform irrotational inlet flow. The outflow boundary condition is in 
general handled via consideration of a fully developed velocity profile at a sufficiently large truncated 
duct length, established through successive numerical investigations. None of these approaches 
provides an accuracy-controlled numerical solution, and several computer runs are required to inspect 
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for the effects of mesh refinement and truncated domain extent on the final numerical results for the 
velocity field. 

Recently, based on the ideas in the generalized integral transform technique (GITT),' a hybrid 
numerical-analytical approach for the incompressible steady state Navier-Stokes equations was 
advancedg-" and illustrated for the classical test problems of a lid-driven square cavity flow and 
natural convection within a porous cavity. The excellent convergence characteristics of the proposed 
eigenfhction expansion were demonstrated for various values of the governing parameters, and 
previously reported numerical solutions were validated in a more definitive way. The same success as 
in previous developments was achieved, including various non-linear diffision and convection- 
diffusion problems [8] and the boundary layer equations for internal flow with 
automatic accuracy control. 

The present work is aimed at further advancing the integral transform approach for the solution of 
the full Navier-Stokes equations in the context of internal flow applications. Numerical results with 
automatic error control are obtained for various values of the Reynolds number under both parallel and 
irrotational inlet flow conditions. The convergence behaviour of the proposed eigenfunction expansion 
is illustrated for some typical cases. Results for both inlet flow conditions are critically compared 
against each other and with the classical boundary layer formulation. Also, the effect of imposing a 
hlly developed flow situation on a truncated finite duct length is inspected. 

ANALYSIS 

Two-dimensional steady incompressible laminar flow of a Newtonian fluid is considered, developing 
inside a parallel plate channel, with a uniform inlet longitudinal velocity distribution, for either parallel 
or irrotational flow (Figure 1). In dimensionless form and adopting the streamfhction-only 
formulation, the problem is given as 

Re 
V4*(X, r> = ,P(x, y),  0 < y  < 1, x > 0 

where the streamfunction is defined in terms of the velocity components in the normal and longitudinal 
directions y and x respectively as 

The non-linear source term in equation (1 a) is written as 

a* @* @* a* @$ @* P ( x , y ,  *)=- -+- -- - 
(j3, (ax3 wax) ax ( & 2 a y + z j 7 )  

u=o v=o 
3 2  

u =  7 [I-Y 1 u=l. v=o 
or 

u=l.w=O pJ .- 

v = O  

u=o v=o 
Figure 1. Geometry and coordinate system for developing duct flow 
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and the biharmonic operator is given by 

The Reynolds number is defined in terms of the hydraulic diameter of the parallel plate channel as 

4buo 
Re = - v ’  

where b is the half-spacing between the plates, uo is the uniform velocity at the duct inlet and v is the 
kinematic viscosity of the fluid. 

The required boundary conditions in terms of the streamfhction are given by 

which represent the inlet conditions (x = 0), the fully developed solution (x + oo), the symmetry 
condition 0 = 0) and the no-slip/permeability wall conditions 0, = 1). The inlet conditions (2a,b) 
correspond to the more frequently considered situation of a uniform parallel inlet flow (u = 1,v = 0). 
For the second situation analysed here, i.e. the irrotational inlet condition, equations (2a,b) are 
modified to give 

Following the ideas in the generalized integral transform technique,%I4 in order to select the 
appropriate auxiliary eigenvalue problem which will provide a basis for the eigenfunction expansion, 
the original problem is made homogeneous in the boundary conditions for the co-ordinate selected to 
be eliminated through integral transformation. Therefore the streamfunction is rewritten as 

4% Y )  = **h Y )  + * m ( h  (3) 

where rl/m(y) represents the hlly developed flow streamfunction. The problem related to $*(x,y) 
becomes 

where 
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= 0, 3 Y  W * ( O ,  Y) 
dX $*P, Y) = 7 - 2' 

= 0, 

= 0, 

= 0. 

W*(W Y) 

a'$*(x,  0) w 
a$*(% 1) 

?Y 

d X  
$*(m, Y )  = 0, 

$*@, 0) = 0, 

$*(% 1 )  = 0, 

For irrotational inlet flow the conditions (5a,b) are replaced by 

2 2 '  8x2 
= 0. 3 Y  #**(O, Y) $*(O,  y) = - - - 

For the present biharmonic equation (4a) the appropriate eigenvalue problem is taken as 

-- d4yi(Y) -p;yi(y), i =  I ,  2, . . . ,  
dlp 

yi(0) = 0, 

yi( 1) = 0, 

with boundary conditions 

= 0, 

= 0. 

d'yi(0) 
d 3  

dYi(1) 
dY 

The normalized eigenfunctions have the orthogonality property 
1 J, K(Y)UY) dY = 4, (7) 

where 6, = 0 for i # J  and 6, = 1 for i =J. This allows the definition of the integral transform pair 

where $f(x) represents the integral transformed potential. 
Problem (6) can be solved analytically to yield 

transform, 

inversion, 

The eigenvalues pi are obtained from the transcendental equation 

The partial differential equation (4a) is now integral transformed through the operator J, yi(y)dy. After 
evaluation of the individual integrations the transformed system of ordinary differential equations 
becomes 

tanhpL i= tanp i ,  i = l , 2  , . . . .  (9b) 
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where 

dz Y. 1 

D, = J, &(Y) $dY 

and the transformed source function is given by 

with 

dYk 
(1 lb, c) 

(1 Id, e) 

(1 I f ,  g) 

B. .  - d3Yk 
A, .  yk - - fo  &qw dy, yk - fo &q-& dy, 

d q  d2Yk 
c.. yk - - lo y.- dy - d 3  dy, Cm, = j: &qf$ dy, 

B,u = f0 K- - dy. 
1 d2q  dt,hm A .. - 

d 3  dY 
- jo K q s  dy, 

dY 
The boundary conditions in the x-co-ordinate, required for the solution of system (lo), are also 

integral transformed accordingly to yield 

Again, for imtational inlet flow equation (12b) becomes 

I- - 0. 
d2$f (0) 

d x 2  

Once the transformed potentials $r(x) have been numerically computed along the x-direction 
through the appropriate algorithm for boundary value problems, as discussed in the next section, the 
inversion formula (8b) is recalled to provide the streamfunction explicitly at any prescribed position in 
the y-direction. 

COMPUTATIONAL PROCEDURE 

The computational algorithm can be readily constructed, including the desirable features of 
automatically controlling the global error in the final solution for the streamfunction at selected 
points and of avoiding the need for approximating the outflow boundary condition at an arbitrary finite 
duct length. 

Therefore the truncated version of boundary value problem (10-1 2) to any specified finite order N is 
numerically handled, for instance, through subroutine DBVPFD from the IMSL library,'5 which offers 
an automatic adaptive scheme for local error control of the transformed potentials results. Before 
utilizing this routine, the system (10-12) is rewritten as a first-order ODE system of 4N equations. 
Also, the original fully developed flow boundary conditions at x + 00, equations (12c,d), are exactly 
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satisfied through an algebraic transformation of the independent variable x, which is mapped into the 
finite domain 0 5 q 5 1. Possible choices for such a transformation are given by 

q = 1 - (1 +a)-’, 
q = 1 - e-‘, 

where c is a positive constant which may be varied according to the Reynolds number considered to 
accelerate convergence. Since we are dealing with ordinary differential equations only, the 
transformation becomes quite straightforward. Besides, these numerical results allow for a critical 
inspection of the effects on the final converged solution when one truncates the duct to a finite length L 
and imposes fully developed conditions at the duct end. 

Since all the intermediate numerical tasks are accomplished within a prescribed accuracy, one is left 
with the job of reaching convergence in the eigenfunction expansions and automatically controlling the 
truncation order N for the requested number of fully converged digits in the final solution for the 
streamfunction at those positions of interest. 

The analytic form of the inverse formula (8b) allows for a direct testing procedure at each specified 
position within the medium, and the truncation order N can be gradually increased in fixed steps 
N + until convergence is reached at all desired locations. In addition, the numerical results already 
available for the lower-order N serve as an excellent initial guess for the iterative procedure 
implemented within the boundary value problem solver, providing a marked reduction in 
computational cost. The simple tolerance-testing formula 

is employed until E satisfies the required global error over all the positions (x, y) requested. Once the 
transformed streamfunctions are available, the velocity components u(x, y) and v(x, y) are directly 
evaluated from their definitions, equations (1 b,c), after substitution of the inversion formula (8b), to 
yield 

However, it is a well-known fact in eigenhction expansion approaches * that the series formed from 
derivatives of the eigenfunctions may experience a slow convergence, since the monotonically 
increasing eigenvalues appear in the numerator of the infinite summations. This behaviour was again 
illustrated for the case of a lid-driven cavity flow in Reference 10. Therefore the axial velocity 
component u(x, y) is alternatively evaluated from an error-controlled numerical differentiation of the 
fully converged results for the streamfunction. The routine D E W  from the JMSL library” is easily 
implemented for this purpose and equation (15a) is then avoided. 

RESULTS AND DISCUSSION 

First of all the algorithm is employed to yield benchmark results for the special case of creeping flow 
(Re = 0), which is also used to validate the automatic global error control scheme. A relative error 
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target of lo4 is selected and convergence is considered to be attained to within 2 1 in the fourth digit 
of the streamfunction. Table I illustrates the convergence behaviour of the duct centreline longitudinal 
velocity u(x, 0) at various axial positions for increasing truncation order in the streamfunction 
eigenfunction expansions. The velocity component is converged to four digits at quite low expansion 
orders (N N 5-7). As expected in eigenfunction-expansion-type approaches, the convergence is 
improved away fiom the duct inlet. 

Table I1 presents the same convergence behaviour of the longitudinal velocity component but for the 
case Re = 40, which has been previously studied through purely numerical approaches (finite 
difference’ and finite element6 methods). Essentially the same convergence behaviour is observed in 
comparison with the previous case of Re = 0, and the fully converged results validate the computations 
in References 2 and 6, with a reasonably good agreement to three digits in both cases and a slightly 
better confirmation of the results of the finite difference approach of Reference 2. 

A higher Reynolds number (Re = 300) was also considered, including the effect of the inlet flow 
condition. The overall convergence behaviour is not markedly affected by the increased importance of 
the convective terms, as seen in Table I11 but a few extra terms were required to achieve convergence in 
the position closest to the duct inlet (x = 0.20833) in comparison with the previous cases of lower 
values of Re. The finite difference results presented in graphical form in Reference 5 are in good 
agreement with the error-controlled integral transform computations. The irrotational inlet flow 
condition also demonstrates a slight influence on convergence rates. The more recent numerical 
implementation of Reference 5 achieves a better agreement, to three digits, with the present fully 
converged results than the early work of Wang and Longwell. 

The influence of prescribing the outflow fully developed boundary condition on a finite duct length 
was also investigated. Table IV shows the longitudinal velocity component at various axial positions 
along the channel, with Re = 40 and 300, for increasing truncated duct lengths L, as well as the 
reference results for an infinite duct. It can be noticed that results in the region close to the duct inlet 
are not affected by the artificial boundary condition imposed on the finite lengths selected. As the duct 
length is reduced (L = 2) and the computations are performed for increasing axial positions, the 
outflow boundary condition imposed starts perturbing the velocity field behaviour upstream quite 
significantly. Therefore a reliable implementation of a purely numerical approach must include an 
investigation of the appropriate value of L for each Reynolds number, since L should be increased with 
Re, thus increasing the overall computational effort. On the other hand, the use of a conservatively 
large value of L would bring the need for further mesh refinement and, again, increased computational 
cost. The present hybrid numerical-analytical approach completely avoids such difficulties and adds 
the quite desirable feature of automatic error control and estimation. Figure 2 presents an interesting 
comparison of fully converged integral transform results from both the present Navier-Stokes 

Table I. Convergence behaviour of the duct centre- 
line longitudinal velocity component, u(x,O), for 
Re = 0 (inlet conditions: u = 1, v = 0) 

N ~ ~ 0 . 2  x = 0 - 4  ~ ~ 0 . 6  x = 0 * 8  

3 1.031 1.193 1.319 1 a405 
5 1.058 1.198 1.320 1 a405 
7 1.065 1.198 1.321 1.406 
9 1.066 1-198 1.32 1 1 *406 

11 1-066 1.198 1 a32 1 1 *406 
13 1.066 1-198 1.321 1 a406 
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Table 11. Convergence behaviour of the duct centreline 
longitudinal velocity component, u(x, 0), for Re = 40, and 
comparison with purely numerical solutions (inlet condi- 
tions: u = 1, v = 0) 

3 0.9772 1.075 1.162 1.246 
5 1.012 1.083 1.165 1 a250 
7 1 *020 1.083 1.166 1.251 
9 1.022 1.083 1.166 1.25 1 

11 1 -022 1 a083 1.166 1-25 1 
13 1 -022 1-083 1.166 1.251 

Ref. [2] 1-0223 1.0849 1.1693 1.2535 
Ref. [7] 1.0243 1.0884 1.1737 1.2580 

Table IIIa. Convergence behaviour of the duct centreline longitudinal 
velocity component, u(x,O), for Re = 300 (inlet conditions: u = 1, v = 0) 

N x = 0.20833 x = 0.8333 x = 3.3333 x = 7.5 

3 
5 
7 
9 

11 
13 
15 
17 

0.9178 
0.9740 
0.9976 
1 -006 
1.008 
1 *007 
1 -007 
1 -007 

1 a054 
1 *072 
1.071 
1.071 
1.071 
1.071 
1.071 
1.071 

1.273 
1.279 
1 a280 
1.280 
1.280 
1 *280 
1-280 
1 *280 

1 *423 
1.425 
1 *425 
1.425 
1.425 
1 *425 
1 ~425 
1-425 

Ref.[5] 1.008 1 -075 1.283 1 -425 

Table 11%. Convergence behaviour of the duct centreline longitudinal 
velocity component, u(x,O), for Re = 300 (inlet conditions: u = 1, w = 0) 

N x = 0.20833 x = 0.8333 x = 3.3333 x = 7.5 

5 
7 
9 

11 
13 
15 
17 
19 

1 -022 
1.041 
1 *047 
1.048 
1 *049 
1-050 
1 *05 1 
1 *052 

Ref.[ 11 1.0581 
Ref.[5] 1.050 

1.134 
1.145 
1-153 
1.159 
1.163 
1.166 
1.168 
1.170 

1.1880 
1.170 

1-316 
1-324 
1.328 
1.331 
1.333 
1-335 
1 *336 
1.337 

1.3572 
1-34 

1 a437 
1 440 
1.441 
1 -442 
1 443  
1 *443 
1 -444 
1 4 4  

1.4509 
1-44 
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Table IVa. Influence of boundary condition for a 
truncated duct length on centreline longitudinal 
velocity component, u(x, 0) with Re = 40 (inlet 
conditions: u = 1, v = 0) 

X 

0-2 
0-6 
1 *o 
1 -4 
1 *8 
2.0 

L = 2  

1 -022 
1.166 
1.323 
1 *42 1 
1 -480 
1.5 

L = 4  

1 -022 
1.166 
1.322 
1.417 
1 -463 
1.475 

1=6 

1 -022 
1.166 
1-322 
1.417 
1.463 
1.475 

L = K l  

1 -022 
1.166 
1 *322 
1.417 
1 -463 
1-475 

Table IVb. Influence of boundary condition for a truncated 
duct length on centreline longitudinal velocity component, 
u(x,O), with Re = 300 (inlet conditions: u = 1, v = 0) 

X L = 8  L = l O  L = 1 5  L = m  

0.20833 1 a007 1 a007 1 a007 1 *007 
0.8333 1.071 1.07 1 1.071 1 *07 1 
3.3333 1 a280 1.280 1 *280 1 a280 
7.5 1 a437 1.425 1 *425 1 a425 

_ _ _ _ _  Re=300 - - Re=BOO 
__ Re=lZOO 
o o o o o  Boundnry Layer (12-14) 

X+=x/(Dh Re)  

Figure 2. Comparison of centreline longitudinal velocity evolution along duct length between Navier-Stokes and boundary layer 
formulations 
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formulation, with various types of inlet conditions, and the classical boundary layer approximation. 
The centreline longitudinal velocity component is plotted against a dimensionless axial co-ordinate 
containing the Reynolds number, which collapses the boundary layer results into one single curve. 
Clearly the numerical results following the irrotational inlet flow condition (u = 1, o = 0) are much 
closer to the boundary layer results in the vicinity of the duct inlet for all three values of the Reynolds 
number considered. On the other hand, the results from the uniform parallel inlet condition(u = 1, 
v = 0) tend more slowly to the approximate boundary layer solution for increasing values of Re. 
Therefore the appropriateness of the boundary layer approximation for a specific flow situation and Re- 
value is closely connected to the proper identification of the actual flow inlet condition, and a simple 
criterion based on the magnitude of Re might not be safe enough for accurate evaluation of a 
developing flow situation. 

Figure 3 shows a comparison of the longitudinal velocity profiles along the developing region, as 
obtained from both inlet flow conditions, for Re = 300. The expected central concavity of the 
longitudinal velocity distribution is more clearly observable in the situation of uniform parallel inlet 
flow, while the irrotational flow inlet results are more closely behaved to the boundary layer solution. 
The influence of the inlet flow situation is practically unnoticeable for regions a little away from the 
duct inlet region, as represented by the results at x = 3.333 and 7-5. Finally, Figure 4 illustrates the 
development of the transverse velocity component along the duct entry region, showing the expected 
migration of the relative maximum towards the duct centreline as the flow develops. 

The computer code was implemented on a VAX8810 mainframe computer and typical CPU times 
can be reported for Re = 40 (~160 s) and Re = 300 (= 15 min). It should be noted that these CPU time 
values correspond to fully converged results to four significant digits at various positions within the 
channel, as achieved through the automatic error procedure, all in a single run. For further 
improvement in convergence rates and consequently computational cost reduction, the filtering 
technique can be employed additional times at the cost of increased analytical involvement. 

The extension of this approach to different classical test cases should now proceed in an attempt to 
establish sets of benchmark results for reference purposes by users of the various numerical techniques. 
Therefore the present effort should now be continued into the analysis of transient formulations, 
complex geometries and turbulent regimes, following the previous contributions on diffusion problems 
and boundary layer equations.* 

Although this same problem could have been handled through the primitive variables formulation, it 
has been demonstrated in previous  development^"'^ that the choice of the eigenvalue problem 
inherent to the streamfunction-only formulation provides improved convergence behaviour over the 
primitive variables choice. 

- u=l , v=o 
- - - - u = l ,  w=o Rs=300 . . 

0.50 l*oo rn A \ 
-0.50 -o*oor-l g 
-1.00 i- 

3 
I I I I I I I I I 1 

0 1 2  9 4 5 8 7 8 0 10 
3 

Figure 3. Development of longitudinal velocity profile along duct length for both unifodparallel and irrotational inlet condi- 
tions (Re = 300) 
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.=0.20~\ ~ o . * s s s s  /I 

0.40 1 (u=l , v=o) 

0.20 

v ( X J )  
Figure 4. Development of transverse velocity profile along duct length (Re = 300; inlet conditions: 2c = 1, v = 0) 
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